Sphingosine-1-phosphate receptor inhibition prevents denervation-induced dendritic atrophy

نویسندگان

  • Laurent M. Willems
  • Nadine Zahn
  • Nerea Ferreirós
  • Klaus Scholich
  • Nicola Maggio
  • Thomas Deller
  • Andreas Vlachos
چکیده

A hallmark of several major neurological diseases is neuronal cell death. In addition to this primary pathology, secondary injury is seen in connected brain regions in which neurons not directly affected by the disease are denervated. These transneuronal effects on the network contribute considerably to the clinical symptoms. Since denervated neurons are viable, they are attractive targets for intervention. Therefore, we studied the role of Sphingosine-1-phosphate (S1P)-receptor signaling, the target of Fingolimod (FTY720), in denervation-induced dendritic atrophy. The entorhinal denervation in vitro model was used to assess dendritic changes of denervated mouse dentate granule cells. Live-cell microscopy of GFP-expressing granule cells in organotypic entorhino-hippocampal slice cultures was employed to follow individual dendritic segments for up to 6 weeks after deafferentation. A set of slice cultures was treated with FTY720 or the S1P-receptor (S1PR) antagonist VPC23019. Lesion-induced changes in S1P (mass spectrometry) and S1PR-mRNA levels (laser microdissection and qPCR) were determined. Denervation caused profound changes in dendritic stability. Dendritic elongation and retraction events were markedly increased, resulting in a net reduction of total dendritic length (TDL) during the first 2 weeks after denervation, followed by a gradual recovery in TDL. These changes were accompanied by an increase in S1P and S1PR1- and S1PR3-mRNA levels, and were not observed in slice cultures treated with FTY720 or VPC23019. We conclude that inhibition of S1PR signaling prevents dendritic destabilization and denervation-induced dendrite loss. These results suggest a novel neuroprotective effect for pharmaceuticals targeting neural S1PR pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trophic action of sphingosine 1-phosphate in denervated rat soleus muscle.

Sphingosine 1-phosphate (S1P) mediates a number of cellular responses, including growth and proliferation. Skeletal muscle possesses the full enzymatic machinery to generate S1P and expresses the transcripts of S1P receptors. The aim of this work was to localize S1P receptors in rat skeletal muscle and to investigate whether S1P exerts a trophic action on muscle fibers. RT-PCR and Western blot ...

متن کامل

Endogenous EPCR/aPC-PAR1 signaling prevents inflammation-induced vascular leakage and lethality.

Protease activated receptor 1 (PAR1) signaling can play opposing roles in sepsis, either promoting dendritic cell (DC)-dependent coagulation and inflammation or reducing sepsis lethality due to activated protein C (aPC) therapy. To further define this PAR1 paradox, we focused on the vascular effects of PAR1 signaling. Pharmacological perturbations of the intravascular coagulant balance were com...

متن کامل

VASCULAR BIOLOGY Endogenous EPCR/aPC-PAR1 signaling prevents inflammation-induced vascular leakage and lethality

Protease activated receptor 1 (PAR1) signaling can play opposing roles in sepsis, either promoting dendritic cell (DC)–dependent coagulation and inflammation or reducing sepsis lethality due to activated protein C (aPC) therapy. To further define this PAR1 paradox, we focused on the vascular effects of PAR1 signaling. Pharmacological perturbations of the intravascular coagulant balance were com...

متن کامل

Sphingosine 1-phosphate signaling is involved in skeletal muscle regeneration.

Sphingosine 1-phosphate (S1P) is a bioactive lipid known to control cell growth that was recently shown to act as a trophic factor for skeletal muscle, reducing the progress of denervation atrophy. The aim of this work was to investigate whether S1P is involved in skeletal muscle fiber recovery (regeneration) after myotoxic injury induced by bupivacaine. The postnatal ability of skeletal muscle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2016